Minimax Filtering via Relations between Information and Estimation

نویسندگان

  • Albert No
  • Tsachy Weissman
چکیده

We investigate the problem of continuous-time causal estimation under a minimax criterion. Let X = {Xt, 0 ≤ t ≤ T} be governed by the probability law Pθ from a class of possible laws indexed by θ ∈ Λ, and Y T be the noise corrupted observations of X available to the estimator. We characterize the estimator minimizing the worst case regret, where regret is the difference between the causal estimation loss of the estimator and that of the optimum estimator. One of the main contributions of this paper is characterizing the minimax estimator, showing that it is in fact a Bayesian estimator. We then relate minimax regret to the channel capacity when the channel is either Gaussian or Poisson. In this case, we characterize the minimax regret and the minimax estimator more explicitly. If we further assume that the uncertainty set consists of deterministic signals, the worst case regret is exactly equal to the corresponding channel capacity, namely the maximal mutual information attainable across the channel among all possible distributions on the uncertainty set of signals. The corresponding minimax estimator is the Bayesian estimator assuming the capacity-achieving prior. Using this relation, we also show that the capacity achieving prior coincides with the least favorable input. Moreover, we show that this minimax estimator is not only minimizing the worst case regret but also essentially minimizing regret for “most” of the other sources in the uncertainty set. We present a couple of examples for the construction of an minimax filter via an approximation of the associated capacity achieving distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk-Sensitive Filtering and Smoothing via Reference Probability Methods

In this paper, we address the risk-sensitive filtering problem which is minimizing the expectation of the exponential of the squared estimation error multiplied by a risk-sensitive parameter. Such filtering can be more robust to plant and noise uncertainty than minimum error variance filtering. Although optimizing a differently formulated performance index to that of the so-called H1 filtering,...

متن کامل

Minimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions

This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

H∞ Filtering with Inequality Constraints for Aircraft Turbofan Engine Health Estimation

H∞ filters (also called minimax filters) can estimate the state variables of a dynamic system. However, in the application of state estimators, some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of state es...

متن کامل

Adaptive Piecewise Polynomial Estimation via Trend Filtering

We study trend filtering, a recently proposed tool of Kim et al. (2009) for nonparametric regression. The trend filtering estimate is defined as the minimizer of a penalized least squares criterion, in which the penalty term sums the absolute kth order discrete derivatives over the input points. Perhaps not surprisingly, trend filtering estimates appear to have the structure of kth degree splin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012